无监督学习

  • 常见机器学习算法_机器学习端到端场景

    常见机器学习算法包括线性回归、逻辑回归、决策树、随机森林、支持向量机等,可用于分类、回归、聚类等任务。

    2024-06-21
    080
  • 不需要训练的深度学习_深度学习模型预测

    不需要训练的深度学习模型预测,可以通过预训练模型进行迁移学习,利用已有的知识进行新任务的预测。

    网站运维 2024-06-11
    0104
  • 无监督学习流形学习tSNE,监督学习和无监督学习?

    tSNE是一种无监督学习算法,用于数据降维。无监督学习不需要标签,寻找数据内在结构;监督学习需要标签,训练模型进行预测。

    2024-05-06
    0128
  • spss聚类分析操作的方法是什么

    在SPSS中,有两种主要的聚类方法:K-中心聚类和系统聚类。K-中心聚类,也被称为K均值聚类,根据MacQueen算法进行,适用于较大的数据集,可以达到几十万行。这个过程首先对聚类种子点进行预测,然后开始迭代,交替执行两个操作:指定点给聚类和重新计算聚类中心。当明确所需要分出的类别数时,采用快速聚类可以节省运算时间。需要注意的是,此方法只能对样品进行聚类,所使用的变量必须都是连续性变量。,,系统聚类,也被称为分层聚类法,不仅可以对样品进行聚类,还可以对变量进行聚类,变量可以是连续性或分类变量。实际操作中,例如要对数据x2、x3、x4、x5、x6、x7、x8进行系统聚类分析,可以将它们添加到变量,将x1(即地区)添加到个案标注依据。,,无论选择哪种聚类方法,都需要记住一些操作要点。在进行k-均值聚类之前,可能需要先进行数据标准化。还需要根据计算结果来确定聚类的数目。

    2024-01-19
    0238
免备案 高防CDN 无视CC/DDOS攻击 限时秒杀,10元即可体验  (专业解决各类攻击)>>点击进入