过拟合问题
-
反向传播网络中常见的故障有哪些?
反向传播网络是一种用于训练神经网络的算法,它通过计算损失函数相对于每个参数的梯度来更新权重和偏置,尽管反向传播在深度学习中非常有效,但它也容易出现一些故障和问题,以下是反向传播网络常见的故障及其原因:1、梯度消失问题:在深层神经网络中,梯度在反向传播过程中可能会逐渐变小,导致早期层的权重更新非常缓慢,这通常是由……
反向传播网络是一种用于训练神经网络的算法,它通过计算损失函数相对于每个参数的梯度来更新权重和偏置,尽管反向传播在深度学习中非常有效,但它也容易出现一些故障和问题,以下是反向传播网络常见的故障及其原因:1、梯度消失问题:在深层神经网络中,梯度在反向传播过程中可能会逐渐变小,导致早期层的权重更新非常缓慢,这通常是由……