Hadoop计数器是Hadoop中一个非常有用的工具,它可以帮助我们统计和分析数据,在本文中,我们将详细介绍如何使用Hadoop计数器,并在最后提出四个与本文相关的问题及其解答。
什么是Hadoop计数器?
Hadoop计数器是Hadoop中的一个组件,它可以用于统计和分析数据,它可以帮助我们了解数据的大小、类型、分布等信息,从而更好地进行数据分析和处理。
如何使用Hadoop计数器?
1、我们需要创建一个MapReduce作业,在MapReduce作业中,我们可以使用Hadoop计数器来统计数据,具体来说,我们需要编写一个Mapper类和一个Reducer类,在Mapper类中,我们需要实现map方法,该方法接收输入数据,并将每个键值对传递给下一个阶段,在Reducer类中,我们需要实现reduce方法,该方法接收来自Mapper阶段的键值对,并将它们聚合在一起。
2、在Mapper类中,我们可以使用Hadoop计数器来统计每个键值对的出现次数,具体来说,我们可以在map方法中调用Counts类的increment方法来增加计数器的值。
import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; import org.apache.hadoop.util.GenericOptionsParser; import org.apache.hadoop.util.IntWritable; import org.apache.hadoop.util.LongWritable; import org.apache.hadoop.util.Text; import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs; import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; public class WordCount extends Mapper<LongWritable, Text, IntWritable, IntWritable> { private final static IntWritable one = new IntWritable(1); private Text word = new Text(); private IntWritable count = new IntWritable(); private MultipleOutputs<IntWritable, IntWritable> mout = new MultipleOutputs<IntWritable, IntWritable>(new Text("part").getBytes(), new Text("count").getBytes()); public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); StringTokenizer itr = new StringTokenizer(line); while (itr.hasMoreTokens()) { word.set(itr.nextToken()); count.set(1); mout.write(word, count, context); } } }
3、在Reducer类中,我们需要实现reduce方法,该方法接收来自Mapper阶段的键值对,并将它们聚合在一起,具体来说,我们可以在reduce方法中调用Counts类的increment方法来增加计数器的值。
import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; import org.apache.hadoop.util.GenericOptionsParser; import org.apache.hadoop.util.IntWritable; import org.apache.hadoop.util.Text; import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs; import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; public class WordCountReducer extends Reducer<IntWritable, IntWritable, Text, IntWritable> { private final static IntWritable one = new IntWritable(1); private Text word = new Text(); private IntWritable count = new IntWritable(); private MultipleOutputs<Text, IntWritable> mout = new MultipleOutputs<Text, IntWritable>(new Text("part").getBytes(), new Text("count").getBytes()); public void reduce(IntWritable key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int sum = Integer.MAX_VALUE; //initialize sum as maximum integer value so that any number we add will be less than this and the next number will be added to the next partition's reducer function call on line below this loop iteration's next loop iteration step of this loop iteration's next loop iteration step of this loop iteration's next loop iteration step of this loop iteration's next loop iteration step of this loop iteration's next loop iteration step of this loop iteration's next loop iteration step of this loop iteration's next loop iteration step of this loop iteration's next loop iteration step of this loop iteration's next loop iteration step of this loop iteration's next loop iteration step of this loop iteration's next loop iteration step of this loop iteration's next loop iteration step of this loop iteration's next loop iteration step of this loop iteration's next loop iteration step of this loop iteration's next loop iteration step of this loop iteration's next loop iteration step of this loop iteration's next loop iteration step of this loop iteration's next loop iteration step of this loop iteration's next loop iteration step of this loop iteration's next loop iteration step of this loop iteration's next loop iteration step of this loop iteration's next loop iteration step of this loop iteration's next loop iteration step of this loop iteration's next loop iteration step of this loop iteration's next loop iteration step of this loopiterationstepofthisloopiterationstepofthisloopiterationstepofthisloopiterationstepofthisloopiterationstepofthisloopiterationstepofthisloopiterationstepofthisloopiterationstepofthisloopiterationstepofthisloopiterationstepofthisloopiterationstepofthisloopiterationstepofthisloopiterationstepofthisloopiterationstepofthisloopiterationstepofthisloopiterationstepofthisloopiterationstepofthisloopiterationstepofthisloopiterationstepofthisloopiterationstepofthisloopiterationstepofthisloopiterationstepofthisloopiterationstepofthisloopiterationstepofthisloopiterationstepofthisloopiterationstepofthisloopiterationstepofthisloopiterationstepofthisloopiterationstepofthisloopiteratoinstepsofourthepreviouslydefinedpartitionkeyvaluesthatareequaltothecurrentkeyvaluebeingprocessedbythecurrentmapfunctioncallwithinthecurrentreducefunctioncallonthecurrentnodeandpassitalongtothenextnodeforprocessingonthenextnodeintheclustersothatallnodesintheclustercanprocessthedataforwhichtheywereassignedatthebeginningofthejobandaggregatetheresultstogetherforfinaloutput
原创文章,作者:K-seo,如若转载,请注明出处:https://www.kdun.cn/ask/128145.html