linux中hadoop的环境搭建

环境准备

1、硬件需求

Hadoop 2.x 需要至少 2 台机器(一台主节点,一台从节点)以及足够的内存和磁盘空间,具体硬件需求如下:

linux中hadoop的环境搭建

主节点:4 核 CPU、8GB 内存、500GB 磁盘空间

从节点:2 核 CPU、4GB 内存、500GB 磁盘空间

2、软件需求

在 Linux 环境下部署 Hadoop 2.x,需要安装以下软件包:

Apache Hadoop 2.x

Java Development Kit (JDK) 1.8

Apache Maven 3.5.x

linux中hadoop的环境搭建

SSH 客户端(如 OpenSSH)

3、网络配置

确保所有机器之间可以互相访问,并且防火墙允许 SSH 连接,在主节点上创建一个新的用户,并为其分配 SSH 权限,创建一个名为 "hadoop" 的用户:

sudo useradd hadoop
sudo passwd hadoop

下载并解压 Hadoop

1、在 Apache Hadoop 官网下载最新版本的 Hadoop 2.x,选择合适的压缩包格式(tar.gz 或 tar.bz2),下载 tar.gz 格式的 Hadoop:

wget https://downloads.apache.org/hadoop/common/hadoop-2.9.3/hadoop-2.9.3.tar.gz

2、将下载的压缩包上传到服务器,并解压:

tar -zxvf hadoop-2.9.3.tar.gz

配置 Hadoop

1、配置环境变量

编辑 ~/.bashrc 文件,添加以下内容:

linux中hadoop的环境搭建

export HADOOP_HOME=/path/to/hadoop-2.9.3
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop

保存并退出,然后执行以下命令使配置生效:

source ~/.bashrc

2、配置 Hadoop 核心组件参数

编辑 $HADOOP_CONF_DIR/core-site.xml$HADOOP_CONF_DIR/hdfs-site.xml$HADOOP_CONF_DIR/mapred-site.xml$HADOOP_CONF_DIR/yarn-site.xml 文件,根据实际需求进行配置,设置 HDFS 的副本数:

<property>
  <name>dfs.replication</name>
  <value>3</value>
</property>

配置 SSH免密登录(可选)

为了方便操作,可以配置 SSH免密登录,在主节点上生成 SSH 密钥对:

ssh-keygen -t rsa -P '' -f $HOME/.ssh/id_rsa

将公钥复制到从节点的 ~/.ssh/authorized_keys 文件中:

cat $HOME/.ssh/id_rsa.pub | ssh user@slave_ip "mkdir -p $HOME/.ssh && cat >> $HOME/.ssh/authorized_keys"

启动 Hadoop 各组件(可选)

如果已经配置了 SSH免密登录,可以直接在主节点上运行以下命令启动 Hadoop 各组件:

start-dfs.sh start namenode  start HDFS master node and namenode process in background mode; start yarn resourcemanager and nodemanager processes in foreground mode to see output information; start mapreduce jobhistory server process in foreground mode to see output information; start web界面 for monitoring and managing the cluster by accessing http://master_ip:50070 from a web browser on the master machine or any other machine in the network that can access it; start hdfs shell by typing hdfs dfsadmin into the command line interface on the master machine and then type exit; start yarn shell by typing yarn jar into the command line interface on the master machine and then type exit; start mapreduce shell by typing mapreduce jar into the command line interface on the master machine and then type exit; start web界面 for monitoring and managing the cluster by accessing http://master_ip:50070 from a web browser on the master machine or any other machine in the network that can access it; start hdfs web界面 for monitoring and managing the cluster by accessing http://master_ip:50075 from a web browser on the master machine or any other machine in the network that can access it; start yarn web界面 for monitoring and managing the cluster by accessing http://master_ip:8088 from a web browser on the master machine or any other machine in the network that can access it; start mapreduce web界面 for monitoring and managing the cluster by accessing http://master_ip:8042 from a web browser on the master machine or any other machine in the network that can access it; start hdfs web界面 for monitoring and managing the cluster by accessing http://master_ip:50070 from a web browser on the slave machine or any other machine in the network that can access it; start yarn web界面 for monitoring_and_managing_the_clusterbyaccessinghttp://slave_ip:8088fromawebbrowserontheslavemachineoranyothermachineinthenetworkthatcanaccessit; start mapreduce web界面 for monitoring_and_managing_the_clusterbyaccessinghttp://slave_ip:8042fromawebbrowserontheslavemachineoranyothermachineinthenetworkthatcanaccessit; start hdfs shell by typing hdfs dfsadmin into the command line interface on the slave machine and then type exit; start yarn shell by typing yarn jar into the command line interface on the slave machine and then type exit; start mapreduce shell by typing mapreduce jar into the command line interface on the slave machine and then type exit; start web界面 for monitoring and managing the cluster by accessing http://master_ip:50070 from a web browser on the slave machine or any other machine in the network that can access it; start hdfs web界面 for monitoring and managing the cluster by accessing http://master_ip:50075 from a web browser on the slave machine or any其他机器inthenetworkthatcanaccessit; start yarn web界面 formonitoringandmanagingtheclusterbyaccessinghttp://master_ip:8088fromawebbrowserontheslavemachineoranyothermachineinthenetworkthatcanaccessit; start mapreduce web界面 formonitoring_and _managing_theclusterbyaccessinghttp://master_ip:8042fromawebbrowserontheslavemachineoranyothermachineinthenetworkthatcanaccessit; start hdfs shell by typing hdfs dfsadmin into the command line interface on both machines, and then type exit; start yarn shell by typing yarn jar into the command line interface on both machines, and then type exit; start mapreduce shell by typing mapreduce jar into the command line interface on both machines, and then type exit; start web界面 for monitoring and managing the cluster by accessing http://master_ip:50070 from a web browser on both machines or any other machine in the network that can access it; start hdfs web界面 for monitoring and managing the cluster by accessing http://master_ip:50075 from a web browser on both machines or any other machine in the network that can access it; start yarn web界面 formonitoringandmanagingtheclusterbyaccessinghttp://master_ip:8088fromawebbrowseronbothmachinesinthenetworkthatcanaccessit; start mapreduce web界面 formonitoring _and _managing_theclusterbyaccessinghttp://master_ip:8042fromawebbrowseronbothmachinesinthenetworkthatcanaccessit; start hdfs shell by typing hdfs dfsadmin into the command line interface on both machines, and then type exit; start yarn shell by typing yarn jar into the command line interface on both machines, and then type exit; start mapreduce shell by typing mapreduce jar into the command line interface on both machines, and then type exit; start web界面 for monitoring and managing the cluster by accessing http://master_ip:50070 from a web浏览器 on both machines or any other machine in the network that can access it; start hdfs web界面 for monitoring and managing the cluster by accessing http://master_ip:50075 from a web browser on both machines or any other machine in the network that can access it; start yarn web界面 formonitoringandmanagingtheclusterbyaccessinghttp://master_ip:8088fromawebbrowseronbothmachinesinthenetworkthatcanaccessit; start mapreduce web界面 formonitoring _and _managing_theclusterbyaccessinghttp://master_ip:8

原创文章,作者:K-seo,如若转载,请注明出处:https://www.kdun.cn/ask/194080.html

Like (0)
Donate 微信扫一扫 微信扫一扫
K-seo的头像K-seoSEO优化员
Previous 2024-01-03 03:15
Next 2024-01-03 03:16

相关推荐

  • Hadoop中的MultipleOutput实例使用

    Hadoop是一个开源的分布式计算框架,它允许用户在大量计算机集群上进行数据处理和分析,在Hadoop中,MultipleOutput是一种用于将多个输出写入到一个文件或者多个文件中的功能,本文将详细介绍Hadoop中的MultipleOutput实例的使用。1、MultipleOutput简介MultipleOutput是Hadoo……

    2023-12-31
    0110
  • MapReduce能否成为统计处理中传统部件的有效替代品?

    MapReduce是一种编程模型,用于处理和生成大数据集。它可以替代传统的统计部件,如数据库查询和报表生成工具,以更高效地处理大规模数据。通过将任务分解为多个并行操作,MapReduce可以加快数据处理速度并提高可扩展性。

    2024-08-19
    059
  • spark 集群

    Spark是一个快速、通用的分布式计算系统,用于大规模数据处理,它提供了一个高层次的API,使得开发人员可以轻松地编写分布式应用程序,Spark集群是一组相互连接的计算机,这些计算机共同工作以执行任务,本文将介绍如何搭建一个Spark集群,并对其进行示例分析。一、环境准备1. 硬件要求:至少需要3台服务器,每台服务器至少具有2GB内存……

    2023-11-20
    0125
  • 如何构建有效的大数据处理框架?

    处理大数据的框架随着信息技术的迅猛发展,大数据已经成为现代信息社会的重要特征之一,大数据的处理涉及到海量数据的采集、存储、分析以及可视化等多个方面,为了有效处理这些数据,各种大数据处理框架应运而生,本文将详细介绍几种主流的大数据框架,包括Hadoop、Spark和Flink,并探讨它们的特点、优缺点及适用场景……

    2024-12-13
    04
  • hive中怎么执行HDFS命令和查看目录属性

    Hive中执行HDFS命令1、使用hdfs dfs -ls命令查看HDFS目录结构在Hive中,可以使用hdfs dfs -ls命令查看HDFS目录结构,这个命令会列出指定目录下的所有文件和子目录,使用方法如下:SELECT hdfs('hdfs://&lt;namenode_host&gt;:&lt;name……

    2024-01-03
    0142
  • 什么是分布式文件数据库?它如何改变数据存储与管理?

    分布式文件数据库是一种基于分布式文件存储的数据库系统,旨在通过将数据分散存储在多个节点上,提高系统的扩展性、可靠性和性能,以下是对分布式文件数据库的详细解析:一、基本概念与特点1、分布式文件系统:分布式文件系统(Distributed File System, DFS)通过网络将多个独立的存储设备连接起来,形成……

    2024-11-23
    03

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

免备案 高防CDN 无视CC/DDOS攻击 限时秒杀,10元即可体验  (专业解决各类攻击)>>点击进入